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Abstract

An Indian Ocean satellite relay is examined. The relay
satellite position is optimized by minimizing the sum of
downlink and satellite to satellite link losses. Osculating
orbital elements are used for fast intensive orbital compu-
tation. Integrated Van Vleck gaseous attenuation and a
Crane rain model are used for downlink attenuation.
Circular polarization losses on the satellite to satellite link
are found dynamically. Space to ground link antenna
pointing losses are included as a function of yaw and
spacecraft limits. Relay satellite positions between 90 to

100 degrees East are found attractive for further study.

1.0 BACKGROUND

The Tracking and Data Relay Satellite System
(TDRSS) has provided vital communication relay service
between low altitude satellites and White Sands, New
Mexico. Figure 1 shows a polar view of the Earth and
relative positions of TDRS East and TDRS West. The
ground station at White Sands looks southwest toward
TDRS West and southeast to TDRS EasL The comple-
mentary coverage of western and eastern relays allows
nearly full time communication links with low altitude
satellites. The complementary coverage is implied by the
view of the Earth as seen from TDRS West as shown in

Figure 2 and the view from TDRS East (Figure 3). Fig-
ures 2 and 3 imply that the Indian Ocean region is a
region of concern for marginal communication. Indeed,
viewers who watched the Hubble Space Telescope (HST)
repair saw excellent video until HST passed over the

Indian Ocean. The video flickered and was gone, just that
quickly. Approximately four minutes later the link to

TDRS West was established as HST approached Malaysia.

We examine the possibility of an Indian Ocean
relay to augment TDRSS communication. Figure 4 shows
the view from a possible Indian Ocean relay. A ground
station in southeastern Australia may be considered for the
uplink. The ground station, Tidbinbilla (35.402S,
148.981E), is marginally within view of the relay at 90

degrees East. The ground station would be expected to
suffer signal attenuation at low antenna elevation angle.
Here we see the first part of a two homed dilemma. The

ground station attenuation could be relieved by transferring
the Indian Ocean relay eastward to raise the Australian
ground station elevation angle. However, this would
aggravate the space-space link (SSL) losses in terms of
both free space loss and multipath loss. (Multipath loss
was related to the video flicker from HST before the

signal disappeared). It is difficult to reach a compromise
between these competing demands unless the system
designer defines some overall system objective function.

Here, we choose a conceptually simple and useful
objective function composed of the sam of downlink and
SSL losses. We seek to minimize this "Total Loss" objec-
tive function to optimize system performance. This con-
cept will apply to any ground station, any relay, and any
low altitude user for very general results.

The optimization is computationally intensive.
The simulation for the relay must include the SSL link to

a low altitude satellite such as the Gamma Ray Observer
(GRO) at 5 second intervals. Muhipath statistics are
compiled for periods of at least 24 hours at each relay
position. The intensive computations require efficient,
accurate algorithms at every step. We begin by using a
method of osculating elements to simulate orbits quickly
and accurately for altitudes ranging from 200 to over
42000 km. At each time, a number of losses must also be
calculated on both the space to ground link (SGL) and the
space-space link (SSL).

The space to ground losses include:
• Gaseous attenuation

- Water vapor
- Oxygen
- Crane rain attenuation

• SGL antenna loss due to limit imposed by
antenna stops and yaw

• Free space loss
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SSLlossesinclude:
• Two ray interference for multipath loss

- Earth grazing ray attenuated by
TDRS antenna pattern, gaseous atten-
uation

• Free space loss

We f'wst show some key results for the method of
osculating elements, along with a relatively new and un-
used result for lunar perturbations. Short expressions for
the loss terms follow. Intermediate level results are
shown for a relay which has no yaw or SGL antenna
restrictions. The paper concludes with three dimensional

plots of total loss as a function of longitude and relay yaw
for a relay at 8 degree inclination. A TDRS 1/GRO exam-

ple demonstrates the method and indicates practical opti-
mul/I relay positions.

2.0 ORBITAL ANALYSIS

The method of osculating elements is used here for
speed and accuracy in orbital computation. This method
has been used by classical astronomers [1]. The method

relies on an initial set of Keplerian elements which chang-
es continuously due to a non-central force field. Typical
non-central forces to be considered are:

1. Oblate earth gravitational (included here)
force

2. Higher earth gravitational (no available result for

force terms osculating elements)
3. Moon and sun perturba- (Ash 1974)

tions

4. Air drag (omitted here)
5. Radiation pressure (omitted here)

The method of osculating elements has often been
avoided because it requires analytic derivations for rates of
change for the classical orbital elements. Ash [2] has
removed some of these objections with a derivation of the
smoothed rates of change of orbital elements due to lunar
perturbations. Other rates of change were discussed previ-
ously in a 1976 SCSC paper [3]. The higher earth gravi-
tational perturbation terms have not yielded short analytic
relations, to our knowledge.

2.1 Oblateness Effects. The oblateness effects have been
found to give a regression of nodes

W ,, _ j, cos (i) rad/sec (2-1)

The argument of perigee changes as

3;;Wp = _ J2 (-I +5cos2(i)) rad/sec

and the mean anomaly changes as

M - ._. J2 _ (-I +3cos'(i)) rad/sec

W = fight ascension, tad

Wp = argument of perigee, rad
R = earth radius, km

Where = earth gravitational constant

= 0.39860064 "10 4 kln_/sec 2

PsL = a (l-e:) = semilatus rectum
/2 = 1.082635 "10 .3

a = semimajor axis, km

e = eccentricity
i = inclination ((leg.)

These are the three main perturbing effects which
will concern us as we implement the method of osculating
elements. Even these first order effects are interesting.
The argument of perigee has a stationary point (at cos2i =
1/5, or i = 63.43°). This is the basis of a stable "Molniya"
satellite communication orbit which has been serving the
USSR for over two decades. The stability at i = 63.43 °
has been a concern for decades, and it is still being stud-
ied.

2.2 Lunar Perturbations

In the early 1970's, MIT's Lincoln Lab was con-
cerned with satellites at geosynchronous altitudes and

higher. The moon is a leading source of perturbations at
geosynchronous altitude. Lincoln Lab had a Planetary
Ephemeris Program (PEP) developed in that period which
allowed discrete simulations for the 3 body problem
(earth-moon-satellite). PEP required exorbitant amounts
of computer time, and Lincoln Lab soon realized that a

leading orbital dynamicist should examine the problem, in
an attempt to get good orbital solutions in a reasonable
runtime. M. Ash found that reasonable solutions could be

found by spreading the moon into a ring of equivalent
lunar mass. His leading terms for the following satellite
perturbations were:

(2-2)

(2-3)

M1S019B

239



cos,,,
rad/orbit

a" [315 _ 315 cos_(I3 +2205cos4(l )1]
_L-fff _ " 12s jj

_(__l/_.:J [3 ]+ a_ (continued)

[-._ _sin'(Wp)÷(_ 315 sin'-- Ao¢" "l rad/o_t+ --r t%J_ ,,.,j

Where I._l ,. lunar gravitational constant ,, 0.012288earth gravitational constant

I= = inclination with respect to lunar plane
Pm = mean lunar distance = 3.844 • 10s km from

geocenter

This spreading of lunar mass into an equivalent
thin lunar annulus allowed these relatively short, computa-

tionally efficient equations. However, actual runs of the
PEP revealed a difference in stability between prograde

and retrograde satellite orbits. The difference in stability
was traced to unstable semimajor axis and eccentricity.

Figure 5 shows retrograde orbits as more stable than
posigrade.

2.3 Comparison of Prediction Methods

Numerical integration techniques may be broadly

compared to the method of osculating orbital elements as

in Figure 6. The first two numerical integration methods
are found in NASA SP-33 [4,5]. The last entry, for oscu-

lating orbital elements, is our own addition to the table.
The osculating elements offer a good speed comparison,
but a different kind of error is seen. A particular 8 hour

orbit may resonate as a harmonic of the Earth's third order

gravitational potential, and grievous error may result from
this latter method.

In practice, the method of osculating elements
has shown good accuracy for TDRS and all users with

altitude greater than 200 kin.

3.0 PROPAGATION EFFECTS
The signal loss on the space-to-space link (SSL) and the
attenuation losses at Tidbinbilla are interesting in their

own right. The SSL losses are seen to increase as the
relay shifts eastward, and the ground station losses to
increase as the relay shifts westward. They must be stud-
ied in detail in order to minimize the sum of losses by

shifting the longitude of the Indian Ocean relay.

3.1 Mulfipath for an Earth Grazing Ray

The space-to-space link between TDRS and the
user may be degraded by a variety of mechanisms.

Figure 7 shows the signal degradation mechanisms which
we consider here. The ray tangent height (HGRAZ) is a

key influence on multipath interference. Two ray
multipath interference is the dominant effect. The reflect-
ed ray is considered as a specular reflection which inter-
feres with the direct ray. Three ray interference models

have been shown by Rummier to give good comparisons
to actual multipath conditions, but we use only two rays
here for simplicity and for maximum constructive and
destructive interferenc_ Minimum signal results when the

reflected ray is 180 degrees out of phase with the direct

ray. These effects would be severe for linearly polarized
rays, with large variations in received signal amplitude for
the TDRS-user link. Horizontal polarization gives deeper

signal fades than vertical polarization. Fortunately, the
TDRSS SSLs have avoided these deep fading possibilities

by using circular polarization.

Circularly polarized links, such as the TDRSS
SSLs, have more benign fadhag than linear polarization.
H. R. Reed [6] has shown the vector sum of the direct and

interfering circularly polarized rays. His general analysis
concludes with:

÷ 2D l/2
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Figure 6: Short Comparison of Prediction Methods
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and

E,--Eo[<'÷R:÷2R:,oo. ,-  ol /mo.,

where

ER = received voltage amplitude

Eo ffi received voltage amplitude in absence
of reflection

D = divergence factor

E£ ffi received reflection voltage amplitude

(3-2)

ct = additional phase lag, rad. = 0

0 = path lag of reflected wave, rad

reflection phase lag of horizontal com-
ponent, rad

reflection phase lag of vertical compo-
nent, rad

R_ magnitude of horizontal reflection
coefficient

R, = magnitude of vertical reflection coeffi-
cienL

For low reflection angles, _ is assumed equal to
rad and _, equal to zero for this simplified analysis. In

addition D is assumed as unity. With these simplifications
and the introduction of a front-to-side power ratio (F)
(3-2) reduces to:

E. [-R + Rh] (3-3)

The front-to-side power ratio consists of both antenna gain

and atmospheric attenuation terms.

(3-2) may be substituted into (3-1) to yield:

-_+ i l ,_Rr s
(o -tO]

(3-4)

At a given front-to-side ratio (F) and reflection

coefficients, I.Lr_.I is seen to follow the same distribu-

tion as a uniformly distributed cosine.

Reed and Russell's result is a good start in de-

scribing the received signal amplitude. However, other
important signal degradation occurs on the TDRS link,
too. Many interesting phenomena occur in the upper
atmosphere, as elucidated by a recent IEEE Transactions
[7]. This key issue on astronomy and remote sensing has
outlined the atmospheric constituents that have been mea-
sured at millimeter wavelengths. These include ozone,
chlorine monoxide, water vapor, nitrous oxide (N20),
HO2, and carbon monoxide in the stratosphere. Measure-
ments in the troposphere (altitudes less than 10 kin) have
concentrated on water vapor at 22.2 GHz and oxygen
transitions at 60 GHz. The primary measurement objec-
fives for future missions, as given by Joe Waters, ale

shown in Figure 8. Note the entire range of objectives
extends to 80 km altitude. We treat only oxygen and

water vapor attenuation here, and ray tangent heights less
than 50 km will usually be required for noticeable attenua-
tion (multipath fading is another matter, and S-band multi-
path may occur for ray tangent heights of hundreds of
km).

The amplitude of the direct ray suffers attenu-
ation in the upper parts of the atmosphere and the reflect-
ed ray is attenuated even more than the direct ray. The
reflected ray suffers integrated Van Vleck gaseous attenua-
tion as found in earlier papers [8,9].

dB, total oxygen attenuation (1 GHz < f < 50 GHz)

where K1 = 0.018
K2 = 0.049
_, = wavelength in cm
E = elevation angle, radians

(3-5)
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Ho

vj

hi

t v j  -si, j

l- tan-1

dB H20 aUenuation.

= 7 km (oxygen scale height)
= exp(-hl/Ho)

= height of ground reflection point above
sea level, km

I-- IV - I I t.'_n-a _ • 1

(3-6)

where K3 = 0.087,

Po = water vapor density at the earth's sur-
face, g/m 3.

a I = _ ; a2= +

The total gaseous attenuation will be assumed to be the
sum of Equations 3-5 and 3-6.

Crane's rain attenuation [10,11,12] may also be

introduced for earth grazing ray attenuation. It is usually
omitted because it is representative of rays less than 4 km
altitude.

The TDRS antenna pattern is the final item con-
sidered here. The genera/antenna pattern given by Silver
for a uniformly illuminated parabolic dish has been found
useful in previous TDRS interference studies [13]. The

antenna off-boresight loss for the reflected ray may then
be described by:

G(U) ---10 log,0 dB (3-7)

where U -- _tD
sin (off-boresight angle)

D = antenna diameter, same units as wavelength
)t

Equation (4-7) has been found to be useful at the TDRS
S, Ku, and Ka-bands.

With

Aa

Aatm =

Gain loss for reflected ray (off-boresight),
dB (Equation 3-7).

Atmospheric loss for reflected ray - Atmo-
spheric loss for direct ray, dB (Equation 3-5
plus Equation 3-6).

The front-to-side ratio can be found from

F.=
(3-8)

and substituted into Equation 3-4 for the magnitude of the
received signal amplitude.

Figure 9 shows potential multipath regions in the
polar regions. In addition, Reed and Russell show consid-
erable multipath effects within the satellite horizon. We
also consider these effects in the results section.

3.2 Ground Station Attenua6on

The integrated gaseous attenuation equations of
Section 3.1 may also be used for the ground station at
Tidbinbilla The appropriate substitutions are made for

ground station elevation angle and ground station altitude
above sea level. The rain model proposed by R. K. Crane
is used here in the following form:

A R = Ha Rp(IB-_)

(3 -9)

where:

HR

E

Rain model height above ground station,
kin

elevation angle of ground antenna, de-
grees

01 = 0.01 (1._) 2-3s°2

Fo = Frequency, GHz

Y = 2.3 logl0[v]
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v = HJ(tan(e))

[_ = 1.18- 0.00475 (F-IO)

de = 0.3 logto[v]

The height of the model rain cell is typically

more than 3 km and is a function of ground station lati-
tude. Dr. Ippolito of Stanford Telecom has pointed out
that rain cell height is a function of intensity.

Rain attenuation is intrinsically a probabilistic

phenomenon. It has been the subject of many excellent
theoretical studies over several decades. Lin [14] has
described rain attenuation as lognormal over several orders

of magnitude. Our primary interest here is only in the two
orders of magnitude between 0.01 and 0.0001 rainfall

probability, and a much simpler function is adequate for

US.

Rain attenuation may often be treated as a two-

parameter exponential probability density function over
two orders of magnitude. This is apparent in a form of

the Rice Holmber8 relations for attenuation given by
Dutton [15], and the exponential function has been useful
in other derivations. For example, constant elevation

angle experiments conducted with Applications Technolo-
gy SateUite-6 (ATS-6) were quantitatively different at each

ground location, but they would be represented approxi-

mately by:

p (A R >_.A) -- _ exp - _--_, for A >--_, (3-10)

where rain attenuation AR >- an arbitrary attenuation A,

riB.

= fraction of time noticeable rain or cloud attenu-
ation occurs, typically A dB.

k = lower cut-off for exponential distribution, dB.

I_ = standard deviation of exponential distribution,
dB.

We assume that _, and [3can be weighted by

(cosecant elevation) so that equation (3-9) can apply to
other elevation angles. We also assume that attenuation
has a frequency dependence described by Crane's rain

model.

A rain region F is assumed for Tidbinbilla.

(This will be subject to change). The rain rate at 0.99
exceedance probability is 1.7 min/hr and the corresponding

rain rate at the 0.999 level is 5.5 rain/hr.

The total atmospheric attenuation (rain atten-

uation + gaseous attenuation) at Tidbinbilla is seen on
Figure 10 to be a strong function of elevation angle. If
ground station attenuation were the only concern, the
Indian Ocean relaY would he located near Australia.
However, this would cause multipath losses on the space-

space link to increase sharply.

Overall relay communication performance is

more closely related to the sum of ground station losses

and SSL losses then to any single loss.

4.0 GEOSTATIONARY RESULTS

All three relay satellites are geostationary for

these examples. This rare event would occur wl_en TDRS
East, TDRS West, and the Indian Ocean relay have 42164
km semimajor axis, zero inclination, and zero eccentricity.
The elevation angle from Tidbinbilla to the Indian Ocean

relay is therefore constant once the Indian Ocean longitude
is chosen. The SSL link to a low orbiter is simulated at 5
second intervals. All tkree relays are checked for visibili-

ty and multipath loss, and the relay which is visible and
has minimum loss is chosen as the preferred relaY. The
minimum loss is saved from interval to interval, and loss
statistics are compiled. After 24 hours of orbital simula-

tion, the maximum (of the minimum losses) is added to
the uplink loss and saved as SUMLOSS.

Figure 11 shows SUMLOSS results for a range
of Indian Ocean relay longitudes. The Gamma Ray Ob-
servatory (GRO) is chosen both for its important mission
and for its characteristic orbiial elements. The GRO semi-

major axis is approximately 6829 km and has 28.5 deg.
orbital inclination. The downlink losses at 99.9 percentile
level are used for the top curve SUMLOSS999. The top
curve clearly favors relay positions east of 95 east for
S-band SSLs. An absolute minimum is reached in the

vicinity of 125 East. The downlink loss is indicated by
SGL999 and the average space-space loss is shown as
AVSSL. Figure 12 shows conceptually similar results, but
for a Ku band SSL. The average SSL loss is lower than
the corresponding loss at S band, but the optimum relay

position is in the same 125 East vicinity as the S band

Case.

MISOIgB

244



Fk_'m T: tnWz'*mn_ l_em Oleumpaeh)for mMargaW lt)RS . UeerLink

H_t HF ] 1402 CO p

h4wm

SOb

x

zo

lo

oa -_)

HOO

l°l
cIo

BJO

I

NO

x_o

r

r 2

F/gum 8: J_um'en-,e_ Ob_ct/m for Fufzme NASA Mt#me/wr/_zbmIW[nm_ Wmve

Ot_mmm_ (Joe W. w_w_ 1_)

• VV_

Figure B: Pofuetlal MulUpMh Re_lorzz 1"DRSM IWE, ,11PEm_dgO'E

I_I._PA_ _, TIDB' ILL RAN .....

"_ Figure 10: Tldblnbllla Atmospheric Attenuation

,_0._, Refton F,Pain P.ate.S.SMM/HR

245



,SUMLOS8999

+
6

- I 1 I [ I

80 90 100 110 120 130 140 150 160 170

TDRS LONGI TUDE,DEG.EAST

Figure 11: TldblnblIla-TDRS-GRO Sumlo_

2.2875 Gltz SSL Imv,,O

I

180

12

10

8

6

4

2

190 80

,SUML088999

+

I i i I
| i I I I

90 100 110 120 130 140 150 160

TDRS LONGI TUDE,DEGEAST

170 180

Figure 12:Tldblnbllla-TDRS-15 GHz SSL Irmr=O

190

dB
12

10

8

e

4

(

_..
8O

4AVSSL

9O

I I I I I

100 110 120 130 140

TDRS LONGI TUDE,DEG EAST

Figure 13: Tldblnbllla-TDRS-ShuRle Sumloss
2.2875 GHz SSL Irms--O

I

150

GAINLOSS.dB _,,,.......

_ k........ _ ......... ! ............. i ............

I

DEG.

p_-
r

160 0 5 10 15 20 25
HRS

GAINLOSS.dB -- EW.DEG. -- ELEV.DEG

WORST GAINLO88--3.26dB PC 101719_A88
MIN ELEV"-4-539DEG.

Rgure 14: 85E to Tldblnbllla 1=10 Deg

Roll=-2, Yaw=-1.0 Deg, SW2 Llmlt---4.1$5 Oeg

SGLBWsO.TDeg F=13.7'3 G/_

M]S019B

246



Figure 13 shows results for links to a 200 km

altitude satellite, such as the shuttle. The inclination is

again 28.5 deg. The optimum relay position is near 115
East for both S band SSL and Ku band SSL.

5.0 TOTAL LOSS FOR NON-GEOSTATIONARY
RELAYS

TDRS-1 may have some difficulty in pointing
the space to ground (SGL) link antenna toward

Tidbinbilla. The antenna is software limited at 4.15 deg.

South, and some conditions may require more southerly
pointing. Figure 14 shows the diurnal gainloss effects due

to mispointing the SGL antenna. The SGL elevation angle
is seen to dip below -4.15 deg. elevation (right scale) at

16 hours and the resultant SGL antenna gain (top curve)
suffers. Over 3 dB gain loss would be expected in this

case. This "worst gain loss" is actually a function of relay
longitude, inclination, roll and yaw.

The NASA Flight Dynamics Facility has supplied long

term calculations for TDRS-1 inclination. They may be
approximated by an equation as [16]

i = 4.79178 + 0.393246 x + 0.128427 x2 - 0.0209437 x3 +

0.00133576 x4 + 0.0000383016 x5 + 4.04173 10 .7 x6 deg.

where i = inclination, deg.
X = year after 1990

The inclination may be plotted as Figure 15.

14

Inclination, to

Deg.

1995 2000 2005

f
ii

T

Year

Figure 15 : TDRS.1 Inclination vs. Time

Figure 15 implies an 8 degree inclination in late 1994. An

8 deg. inclination and negative 1.8 deg. roll may be used

to examine alternative relay positions. A large array of

runs conceptually similar to Figure 14 may be used to

generate the gain loss results of Figure 16. The

Mathematica two dimensional curve fit for gain loss yields

SGL Gain Loss=

5.63641 10 -6 + 0.000204767 LON + 0.00450539 LON: -

0.000185253 LON 3 + 2.61605 10 .6LON _ - 1.4523 10 .8

LON s + 2.77005 10 -11LON _ + 3.63655 10 .8 Y - 3.56642

10 .6 LON Y - 0.000547018 LON 2 Y + 3.43689 10 .6 LON 3
Y + 0.000166314 y2 + 0.00910266 LON y2.

0.0000636192 LON a y2 + 7.02275 10 .6 y3 + 0.00079983
LON y3 + 0.000391586 y4 + 0.0000232073 yS

where LON = relay longitude deg.
and Y = YAW, deg.

Figure 16 is difficult to examine quantitatively. Figure 17

shows 1.0 dB contour intervals for a wide range of longi-
tudes and spacecraft yaw. Less than 4.0 dB SGL gain

loss is seen for most yaw conditions at relay positions
west of 90E.

This provides an interesting contrast for the loss results of

Figure 11. The sum of downlink and forward link losses

increased sharply for relay positions west of 90E. The

sum of uplink losses, forward losses, and SGL gain loss

may be shown as total loss in Figure 18, or the
Mathematica functional approximation for total loss as

Total Loss=

0.000301945 + 0.0109703 LON + 0.241427 LON: -

0.00795836 LON 3 + 0.0000979854 LON 4 - 5.32179 10.7
LON 5 + 1.07592 10 "9 LON 6 + 3.61795 10"_Y - 3.57324 10"

6 LON Y - 0.00547041 LON: Y + 3.43711 10_ LON 3 y +

0.000340661 Y: + 0.0092383 LON Y: - 0.0000647599
LON 2 Y: + 7.01938 10"6y3 + 0.000799475 LON Y_ +
0.000566351 Y_ + 0.0000231966 y5

Figure 19 is a contour plot of Figure 18 with 1 dB inter-

vals. A near-minimum total loss condition exists between

98-105 E. The contour plot shows the interesting case of

optimum position shifting to 102E for perfect spacecraft
attitude control and zero yaw.

Figure 20 allows a closer look at the optimum longitude

regions. Finer increments were chosen for the runs, and
the entire 90°-100 ° E region is attractive. It also shows

the interesting shift westward for negative yaw.
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The benefits of optimizing TDRS-1 mean longitude con-
tinue to grow throughout the decade. Inclination will
continue to grow with"time (Figure 15), and the Tidbin-
billa elevation angle would be expected to drop below 6

degrees for a relay mean longitude of 85°E in August
1998 at an inclination of 10 degrees. This would imply a

large gaseous and ran attenuation at the ground station.
Relay positions in the 90-100°E region would have size-
able advantages in total loss, as shown in the figures of

the Appendix.

6.0 CONCLUSIONS

We have discussed a way to optimize relay satellite posi-
tions. The conflicting requirements of good downlinks

and good satellite to satellite finks were reconciled by
minimizing the sum of link losses. This method clearly
discriminated against any relay position which offered
excessive loss, whether as a low elevation angle at a

ground station or as an Earth grazing ray on the relay to
satellite rink.

The method required fast, accurate orbital computation and
concise equations for signal loss on the downlink and the
SSL. The method of osculating elements was used to
calculate all satellite positions at 5 second intervals for a

day at each relay longitude. The analytic rates of change
of Keplerian elements were shown in succinct form. The
oblate Earth perturbations were very important for low
orbiting satellites and Ash's lunar perturbation terms
became important at geosynchronous altitude and above.

Gaseous attenuation on both the SSL and the downlink

was represented by integrated Van Vleck attenuation for
oxygen and water vapor. The downlink also included rain
attenuation, as modeled by ILK. Crane. The downlink

attenuation typically became excessive at low ground
elevation angles. Two ray multipath interference was
included on the SSL. The SSL fading became excessive

for Earth grazing rays. A special space to ground antenna
pointing loss was modeled as a function of roll, pitch, and
yaw with the aid of the Euler Theorem and experimental
TDRS SGL gain patterns.

The utility of the method was shown with examples of
TDRS-1 as an Indian Ocean relay. Optimum TDRS lon-

gitudes were seen to be dependent on the orbit of the low
altitude satellite user, the SSL frequency, the ground

station climate, and the TDRS roll and yaw. TDRS-1

longitudes between 90-100E were seen to be attractive for
further study.

The method will be useful for a number of other

cases. A variety of downlink and SSL conditions apply

not only to future TDRSS concepts, but also to new low
altitude satellite communication concepts. Ground stations

at a variety of locations may be considered by changing
the rain region and coordinates. Space-space link frequen-
cies between 1-55 GHz may be used with the current set

of integrated Van Vleck attenuation equations.
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Appendix: Total Loss in 1998, with I=10

Degrees

Figure A-1 shows expected total loss vs. TDRS-1 relay

longitude and yaw for a Tidbinbilla ground station. Ap-

proximately 4 to 5 dB advantage is shown on the contour

plot of Figure A-2 for a relay at 93E versus a relay at
85E.
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